Skip to main content

Biomedical Polymers: An Overview

  • Chapter
  • First Online:
Biomedical Polymers

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Polymers are the most multifaceted class of biomaterials that are routinely being used for biomedical applications ranging from surgical sutures to tissue engineering scaffolds, medical implants, and drug-eluting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramakrishna, S., et al. 2001. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology 61(9): 1189–1224.

    Article  Google Scholar 

  2. Nutton, V. 2012. Ancient medicine. Routledge.

    Google Scholar 

  3. Gomes, M.E., and R. Reis. 2004. Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties. International Materials Reviews 49(5): 261–273.

    Article  Google Scholar 

  4. Nair, L.S., and C.T. Laurencin. 2007. Biodegradable polymers as biomaterials. Progress in Polymer Science 32(8): 762–798.

    Article  Google Scholar 

  5. Ulery, B.D., L.S. Nair, and C.T. Laurencin. 2011. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics 49(12): 832–864.

    Article  Google Scholar 

  6. Markets.com, M. Biomaterials Market [By Products (Polymers, Metals, Ceramics, Natural Biomaterials) & Applications (Cardiovascular, Orthopedic, Dental, Plastic Surgery, Wound Healing, Tissue Engineering, Ophthalmology, Neurology Disorders)]—Global Forecasts to 2017. 2013.

    Google Scholar 

  7. Ozdil, D., and H.M. Aydin. 2014. Polymers for medical and tissue engineering applications. Journal of Chemical Technology and Biotechnology 89(12): 1793–1810.

    Article  Google Scholar 

  8. Li, S. 1999. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research 48(3): 342–353.

    Article  Google Scholar 

  9. Damodaran, V.B., et al. 2012. S-Nitrosated biodegradable polymers for biomedical applications: synthesis, characterization and impact of thiol structure on the physicochemical properties. Journal of Materials Chemistry 22(13): 5990–6001.

    Article  Google Scholar 

  10. Gunatillake, P., R. Mayadunne, and R. Adhikari. 2006. Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review 12: 301–347.

    Article  Google Scholar 

  11. Katz, A., and R. Turner. 1970. Evaluation of tensile and absorption properties of polyglycolic acid sutures. Surgery, gynecology & obstetrics 131(4): 701.

    Google Scholar 

  12. Pihlajamäki, H.K., et al. 2010. Tissue restoration after implantation of polyglycolide, polydioxanone, polylevolactide, and metallic pins in cortical bone: an experimental study in rabbits. Calcified Tissue International 87(1): 90–98.

    Article  Google Scholar 

  13. Wang, L., et al. 2010. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds. Tissue Engineering Part A 16(6): 1937–1948.

    Article  Google Scholar 

  14. Dunkelman, N.S., et al. 1995. Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnology and Bioengineering 46(4): 299–305.

    Article  Google Scholar 

  15. Moran, J.M., D. Pazzano, and L.J. Bonassar. 2003. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Engineering 9(1): 63–70.

    Article  Google Scholar 

  16. Ohara, T., et al. 2010. Evaluation of scaffold materials for tooth tissue engineering. Journal of Biomedical Materials Research, Part A 94(3): 800–805.

    Google Scholar 

  17. Xu, L., et al. 2010. In vivo engineering of a functional tendon sheath in a hen model. Biomaterials 31(14): 3894–3902.

    Article  Google Scholar 

  18. Navissano, M., et al. 2005. Neurotube® for facial nerve repair. Microsurgery 25(4): 268–271.

    Article  Google Scholar 

  19. Tian, L., M.P. Prabhakaran, and S. Ramakrishna. 2015. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials rbu017.

    Google Scholar 

  20. Abbushi, A., et al. 2008. Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine 33(14): 1527–1532.

    Article  Google Scholar 

  21. Middleton, J.C., and A.J. Tipton. 2000. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23): 2335–2346.

    Article  Google Scholar 

  22. Maurus, P.B., and C.C. Kaeding. 2004. Bioabsorbable implant material review. Operative Techniques in Sports Medicine 12(3): 158–160.

    Article  Google Scholar 

  23. Kirby, G.T., et al. 2011. PLGA-based microparticles for the sustained release of BMP-2. Polymers 3(1): 571–586.

    Article  Google Scholar 

  24. Zheng, Z., et al. 2010. The use of BMP-2 coupled–Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31(35): 9293–9300.

    Article  Google Scholar 

  25. Uematsu, K., et al. 2005. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26(20): 4273–4279.

    Article  Google Scholar 

  26. Ouyang, H.W., et al. 2002. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for achilles tendon repair. Annals of the New York Academy of Sciences 961(1): 126–129.

    Article  Google Scholar 

  27. Lee, J.J., et al. 2007. Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering. Current Applied Physics 7: e37–e40.

    Article  Google Scholar 

  28. de Ruiter, G.C., et al. 2008. Accuracy of motor axon regeneration across autograft, single lumen, and multichannel poly (lactic-co-glycolic acid)(PLGA) nerve tubes. Neurosurgery 63(1): 144.

    Article  Google Scholar 

  29. de Ruiter, G.C., et al. 2008. Methods for in vitro characterization of multichannel nerve tubes. Journal of Biomedical Materials Research, Part A 84(3): 643–651.

    Article  Google Scholar 

  30. Nair, L.S. and C.T. Laurencin. 2006. Polymers as biomaterials for tissue engineering and controlled drug delivery. In Tissue engineering I, 47–90. New York: Springer.

    Google Scholar 

  31. Chiari, C., et al. 2006. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and cartilage 14(10): 1056–1065.

    Article  Google Scholar 

  32. Williams, J.M., et al. 2005. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23): 4817–4827.

    Article  Google Scholar 

  33. Hollister, S.J. 2005. Porous scaffold design for tissue engineering. Nature Materials 4(7): 518–524.

    Article  Google Scholar 

  34. Oh, S.H., et al. 2007. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9): 1664–1671.

    Article  Google Scholar 

  35. Wei, B., et al. 2015. Three-dimensional polycaprolactone–hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. Journal of Biomaterials Applications 30(2): 160–170.

    Article  Google Scholar 

  36. Ouyang, H.W., et al. 2003. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Engineering 9(3): 431–439.

    Article  Google Scholar 

  37. Chong, E., et al. 2007. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia 3(3): 321–330.

    Article  Google Scholar 

  38. Ghasemi-Mobarakeh, L., et al. 2008. Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34): 4532–4539.

    Article  Google Scholar 

  39. Zhang, Z., et al. 2006. The in vivo and in vitro degradation behavior of poly (trimethylene carbonate). Biomaterials 27(9): 1741–1748.

    Article  Google Scholar 

  40. Liao, H., et al. 2011. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomaterialia 7(4): 1752–1759.

    Article  Google Scholar 

  41. Habraken, W.J., et al. 2008. Introduction of enzymatically degradable poly (trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29(16): 2464–2476.

    Article  Google Scholar 

  42. Sharifi, S., et al. 2012. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly (trimethylene carbonate)–poly (ethylene glycol)–poly (trimethylene carbonate) macromonomers and nanoclay particles. Acta Biomaterialia 8(12): 4233–4243.

    Article  Google Scholar 

  43. Kluin, O.S., et al. 2009. A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30(27): 4738–4742.

    Article  Google Scholar 

  44. Neut, D., et al. 2009. A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis. Acta Orthopaedica 80(5): 514–519.

    Article  Google Scholar 

  45. Ertel, S.I., and J. Kohn. 1994. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research 28(8): 919–930.

    Article  Google Scholar 

  46. Bourke, S.L., and J. Kohn. 2003. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol). Advanced Drug Delivery Reviews 55(4): 447–466.

    Article  Google Scholar 

  47. Tangpasuthadol, V., et al. 2000. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials 21(23): 2379–2387.

    Article  Google Scholar 

  48. Kohn, J., W.J. Welsh, and D. Knight. 2007. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials 28(29): 4171–4177.

    Article  Google Scholar 

  49. Guda, T., et al. 2014. Methods to analyze bone regenerative response to different rhBMP-2 doses in rabbit craniofacial defects. Tissue Engineering Part C: Methods 20(9): 749–760.

    Article  Google Scholar 

  50. Kim, J., et al. 2012. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate scaffolds. Tissue Engineering Part A 18(11–12): 1132–1139.

    Article  Google Scholar 

  51. Magno, M.H.R., et al. 2010. Synthesis, degradation and biocompatibility of tyrosine-derived polycarbonate scaffolds. Journal of Materials Chemistry 20(40): 8885–8893.

    Article  Google Scholar 

  52. Bhatnagar, D., et al. 2015. Hydrogel implant coatings for peripheral nerve regeneration in society for biomaterials. Charolette, North Carolina.

    Google Scholar 

  53. Ezra, M., et al. 2013. Enhanced femoral nerve regeneration after tubulization with a tyrosine-derived polycarbonate terpolymer: effects of protein adsorption and independence of conduit porosity. Tissue Engineering Part A 20(3–4): 518–528.

    Google Scholar 

  54. Lo, M.-C., et al. 2015. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomedical Microdevices 17(2): 1–11.

    Article  Google Scholar 

  55. Johnson, P.A., et al. 2010. Interplay of anionic charge, poly (ethylene glycol), and iodinated tyrosine incorporation within tyrosine-derived polycarbonates: Effects on vascular smooth muscle cell adhesion, proliferation, and motility. Journal of Biomedical Materials Research, Part A 93(2): 505–514.

    Google Scholar 

  56. Kohn, J. and J. Zeltinger. 2005. Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease. Expert Review of Medical Devices 2(6):667–671.

    Google Scholar 

  57. Macri, L.K., et al. 2012. Ultrafast and fast bioerodible electrospun fiber mats for topical delivery of a hydrophilic peptide. Journal of Controlled Release 161(3): 813–820.

    Article  Google Scholar 

  58. Bonzani, I.C., et al. 2007. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28(3): 423–433.

    Article  Google Scholar 

  59. Saad, B., et al. 1997. Development of degradable polyesterurethanes for medical applications: in vitro and in vivo evaluations. Journal of Biomedical Materials Research 36(1): 65–74.

    Article  Google Scholar 

  60. Grenier, S., M. Sandig, and K. Mequanint. 2007. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. Journal of Biomedical Materials Research, Part A 82(4): 802–809.

    Article  Google Scholar 

  61. Lloyd, L., et al. 1998. Carbohydrate polymers as wound management aids. Carbohydrate Polymers 37(3): 315–322.

    Article  Google Scholar 

  62. Bhatnagar, D., et al. 2013. Rheological characterization of novel HA-Pluronic thermoreversible hydrogels. Journal of Chemical and Biological Interfaces 1(2): 93–99.

    Article  Google Scholar 

  63. Bhatnagar, D., et al. 2014. Hyaluronic acid and gelatin clay composite hydrogels: substrates for cell adhesion and controlled drug delivery. Journal of Chemical and Biological Interfaces 2(1): 34–44.

    Article  Google Scholar 

  64. Choi, K.Y., et al. 2010. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31(1): 106–114.

    Article  Google Scholar 

  65. Zavan, B., et al. 2009. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. Journal of Materials Science Materials in Medicine 20(1): 235–247.

    Article  Google Scholar 

  66. Choi, K.Y., et al. 2009. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry 19(24): 4102–4107.

    Article  Google Scholar 

  67. Fernandez, M.J., M.F. Freire, and M.S. Rey. 2004. Hyaluronic acid nanoparticles, Google Patents.

    Google Scholar 

  68. Heijink, A., et al. 2006. Local antibiotic delivery with OsteoSet (R), DBX (R), and collagraft (R). Clinical Orthopaedics and Related Research 451: 29–33.

    Article  Google Scholar 

  69. Hirakura, T., et al. 2010. Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release 142(3): 483–489.

    Article  Google Scholar 

  70. Lee, F., J.E. Chung, and M. Kurisawa. 2009. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release 134(3): 186–193.

    Article  Google Scholar 

  71. Ren, D., et al. 2005. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Research 340(15): 2403–2410.

    Article  Google Scholar 

  72. Xia, W., P. Liu, and J. Liu. 2008. Advance in chitosan hydrolysis by non-specific cellulases. Bioresource technology 99(15): 6751–6762.

    Article  Google Scholar 

  73. Azhar, F.F., A. Olad, and R. Salehi. 2014. Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Designed Monomers and Polymers 17(7):654–667.

    Google Scholar 

  74. Ribeiro, M.P., et al. 2009. Development of a new chitosan hydrogel for wound dressing. Wound repair and regeneration 17(6): 817–824.

    Article  Google Scholar 

  75. Im, O., et al. 2012. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. International Journal of Nanomedicine 7: 2087.

    Google Scholar 

  76. Kumbar, S., C. Laurencin, and M. Deng. 2014. Natural and Synthetic Biomedical Polymers. Newnes.

    Google Scholar 

  77. Klöck, G., et al. 1997. Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18(10): 707–713.

    Article  Google Scholar 

  78. Chan, A.W., R.A. Whitney, and R.J. Neufeld. 2009. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10(3): 609–616.

    Article  Google Scholar 

  79. Wang, Q., et al. 2011. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. Journal of Biomedical Materials Research, Part A 96(3): 520–527.

    Article  Google Scholar 

  80. Ölmez, S., et al. 2007. Chitosan and alginate scaffolds for bone tissue regeneration. Die Pharmazie-An International Journal of Pharmaceutical Sciences 62(6): 423–431.

    Google Scholar 

  81. Qi, X., J. Ye, and Y. Wang. 2009. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research, Part A 89(4): 980–987.

    Article  Google Scholar 

  82. Wittmer, C.R., et al. 2008. Multilayer nanofilms as substrates for hepatocellular applications. Biomaterials 29(30): 4082–4090.

    Article  Google Scholar 

  83. Ribeiro, C., C. Barrias, and M. Barbosa. 2004. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25(18): 4363–4373.

    Article  Google Scholar 

  84. Chan, L., H. Lee, and P. Heng. 2002. Production of alginate microspheres by internal gelation using an emulsification method. International Journal of Pharmaceutics 242(1): 259–262.

    Article  Google Scholar 

  85. Ribeiro, A.J., et al. 2005. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences 25(1): 31–40.

    Article  Google Scholar 

  86. Jockenhoevel, S. and T.C. Flanagan. 2011. Cardiovascular tissue engineering based on fibrin-gel-scaffolds. INTECH Open Access Publisher.

    Google Scholar 

  87. Jackson, M.R. 2001. Fibrin sealants in surgical practice: an overview. The American journal of surgery 182(2): S1–S7.

    Article  Google Scholar 

  88. Spotnitz, W.D. 2014. Fibrin sealant: the only approved hemostat, sealant, and adhesive—a laboratory and clinical perspective. ISRN surgery, 2014.

    Google Scholar 

  89. Osathanon, T., et al. 2008. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29(30): 4091–4099.

    Article  Google Scholar 

  90. Karp, J.M., et al. 2004. Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. Journal of Biomedical Materials Research, Part A 71(1): 162–171.

    Article  Google Scholar 

  91. Currie, L.J., J.R. Sharpe, and R. Martin. 2001. The use of fibrin glue in skin grafts and tissue-engineered skin replacements. Plastic and Reconstructive Surgery 108: 1713–1726.

    Article  Google Scholar 

  92. Ye, Q., et al. 2000. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery 17(5): 587–591.

    Article  Google Scholar 

  93. Kalbermatten, D.F., et al. 2008. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. Journal of Plastic, Reconstructive and Aesthetic Surgery 61(6): 669–675.

    Article  Google Scholar 

  94. Spicer, P.P., and A.G. Mikos. 2010. Fibrin glue as a drug delivery system. Journal of Controlled Release 148(1): 49–55.

    Article  Google Scholar 

  95. Yuan, Z., et al. 2011. Biomaterial selection for tooth regeneration. Tissue Engineering Part B: Reviews 17(5): 373–388.

    Article  Google Scholar 

  96. Lee, C.H., A. Singla, and Y. Lee. 2001. Biomedical applications of collagen. International Journal of Pharmaceutics 221(1): 1–22.

    Article  Google Scholar 

  97. Isobe, Y., et al. 2012. Oriented collagen scaffolds for tissue engineering. Materials 5(3): 501–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod B. Damodaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Damodaran, V.B., Bhatnagar, D., Murthy, N.S. (2016). Biomedical Polymers: An Overview. In: Biomedical Polymers. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32053-3_1

Download citation

Publish with us

Policies and ethics